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1. ALPHA-INVARIANT OF TIAN

The αG –invariant of Tian is a numerical invariant of a pair
(
V ,G

)
, where V is a smooth Fano variety (see Sec-

tion 4) and G is a finite group acting bi–regularly on V . This invariant coming from Kähler Geometry is identical to
the G-invariant global log canonical threshold, lct

(
V ,G

)
, in Algebraic Geometry ([CS08, Appendix A]). In Algebraic

Geometry, singularities are a natural part of the minimal model program (MMP) in dimensions greater than two;
the MMP is an (almost complete) method to decide in which birational class any given variety lies. The local log
canonical threshold is a tool to classify the worst singularities and crops up in many of the inductive proofs in the
MMP. Furthermore, there are many connections between it and the classification of certain quotient singularities
(see [Sho00, MP99, CS09]).

Below (in Section 2) we define this invariant and give examples of its calculation. We also present some tools
developed within the Magma computer algebra system ([BCP97]) during the author’s visit to the Computer Algebra
Group at the University of Sydney. First though, we’d like to present some interesting and seemingly disparate
applications of these α–invariants / log canonical thresholds.

Conjugacy in Cremona groups. The Cremona group Crn(k) is the group of birational automorphisms of projec-
tive n–space, Pn , over a field k. The Cremona group of the projective line is isomorphic to PGL2(k). The Cremona
group of the plane, Cr2(k), is already large and complex. In higher dimensions, our understanding is even poorer.
One step towards a holistic understanding of the structure of Crn(k) is the classification of its conjugacy classes.
A modern approach to this, initiated by Iskovskikh and Manin (see e.g. [Man67, Isk80]), is to consider rational G-
varieties and G-equivariant maps between them. Indeed, there is a natural correspondence between G-equivariant
birational isomorphism classes of rational G-varieties and conjugacy classes of subgroups of Crn(k) isomorphic to
G (see e.g. [Dol10]).

The following simple observation provides one opening to study conjugacy in higher dimensional Cremona
groups. Namely, consider a rational variety X over k of dimension n; that is a variety where there exists a birational
map over k, ψ : X →Pn . Then for any group G acting bi–regularly on X , the group ψGψ−1 is clearly a subgroup of
Crn(k). If in addition ψ, or any similar map to Pn is non–G–equivariant (i.e. X is non–G–rational), then it follows
that ψGψ−1 is not a sub–group of the automorphisms of Pn . Hence G is not conjugate to a subgroup of Aut(Pn) in
Crn(k). Already this simple observation is powerful, as we see in the following example.

Example 1. Let X be a smooth Fano variety of dimension two such that the self–intersection of the anti–canonical
divisor is five (i.e. a del Pezzo surface of degree five; see Section 4 below). Then X is the blowup of four points
P1, . . . ,P4 in P2 and there are ten (−1)–curves on X (curves whose self–intersection is −1): the four exceptional
curves Ei coming from the blown up points Pi and six others coming from the strict transforms of the lines on
P2 passing through two of the Pi . As any four points in P2 can be mapped projectively to any other four points
it follows that the surface X is unique up to isomorphism. The five sets Fk = {

Ek ,Di j
∣∣i , j 6= k

}
(for k ∈ {1, . . . ,4})

and F5 = {
E1, . . . ,E4

}
contain (−1)–curves that do not intersect one–another, thus any of these sets defines a map

from X to P2 given by their contraction to points and this exhausts all possible birational maps to the projective
plane. The symmetric group S5 acts on these five sets in the standard way and it is not hard to see that the entire
automorphism group of X is given in this way.

Consider the alternating sub–group G =A5 of S5. Under the action of G on S all the (−1)–curves Ek ,Di j are in
one orbit, which shows that there cannot be any G–equivariant maps to P2 and hence S is non–G–rational. Also,
G ′ =A5 is well know to have a bi–regular action on P2. From our simple observation then we can conclude that G
is not conjugate to G ′ in Cr2(k). In fact, there are three conjugacy classes for A5 in Cr2(k), the third being realised
as an action on P1 ×P1.

With knowledge of Tian’s αG –invariant and the action of the group G on some given Fano varieties we can
make use of a Theorem of Cheltsov–Pukhlikov together with the above observation to study conjugacy in higher
rank Cremona groups, we present only a corollary to their theorem here and leave the interested reader to consult
[Che09]. Suppose that for i = 1, . . . ,k; Si is a smooth del Pezzo surface and that Gi is a finite group acting bi–
regularly on Si . Then if for all Gi –orbits Σi on Si we have both |Σi | Ê K 2

Si
= {1, . . . ,9} and αGi (Si ) = lct(Si ,Gi ) Ê 1 it

follows that S = S1 × . . .×Sk is non–G–rational, where G = G1 × . . .×Gk . In our previous example, it is known (see
[Spr77, YY93]) that |Σ| Ê 6 and proved in [Che08] that αA5 (X ) = lct(X ,A5) = 2.
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Kähler Geometry. The existence of a G–invariant Kähler metric on a smooth Fano manifold V whose Ricci cur-
vature is proportional to the metric tensor, that is a Kähler–Einstein metric, is a well studied problem in Kähler
geometry. The only known sufficient condition for variety the V to admit such a metric is that of Tian, Siu, Nadel,
Kollàr and Demailly,

αG (V ) > dim(V )

dim(V )+1
.

The problem of existence of (non-invariant) Kähler–Einstein metrics on smooth Fano surfaces (del Pezzo surfaces)
was completely solved by Tian. Namely, a del Pezzo surface admits a Kähler–Einstein metric whenever it is not
the blowup of one or two points of the projective plane, or equivalently whenever its full automorphism group is
reductive.

The αG -invariant is also significant in determining the convergence of the Kähler–Ricci flow and Kähler–Ricci
iterations. For a Kähler form ω in the first Chern class, the Kähler–Ricci iteration is defined as

ωn = Ricci(ωn+1); ω0 =ω.

Phong, Sturm and Rubinstein used deep estimates of Perelman to show that if the αG –invariant is greater than
one, then the Kähler–Ricci iteration converges exponentially fast to the Kähler form associated to a Kähler-Einstein
metric in the C∞(V )-topology.

2. BACKGROUND ON GLOBAL LOG CANONICAL THRESHOLDS

Before describing the tools implemented in Magma let us first explore the global log canonical threshold of a
Fano variety, the algebro-geometric equivalent of Tian’s α–invariant and how to calculate it. As we mentioned
above, singularities arise naturally in the MMP and we quickly require methods to measure their severity; these
tools are the discrepancy and the log canonical threshold (lct), more background details can be found in [Wil10].

Measuring singularities: the discrepancy. The discrepancy of a (log) pair (V ,∆) where V is a normal variety and
∆ a (Q–Cartier) divisor on V is a numerical invariant. Its calculation involves resolving the singularities of the pair,
keeping track of the pullback of the canonical divisor of V and comparing the results upstairs on the resolution.
Let us illustrate this with an example.

Example 2. Consider the affine curve C on the plane A2 with coordinates x, y given by the zeros of (x + y)(x − y).
This is of course the union of two lines L1,L2 meeting transversely at the origin. To calculate the discrepancy of
(A2,C ) we should blowup the origin O ∈A2 to resolve the nodal singularity of C . Letπ : Bl →A2 be this blowup, with
exceptional curve E ' P1 (π(E) = O). On one chart of the blowup the pullback of is given by x 7→ uv, y 7→ v , where
u, v are the new coordinates and E is given by the equation v = 0. Then the pullback of C is given by the zeros of
(uv+v)(uv−v) = v2(u+1)(u−1), which written additively is 2E +L1+L2, where bar denotes strict transform. Next
we keep track of the canonical divisor KA2 , of course we have π∗(KA2 ) = KBl +kE as the blowup is an isomorphism
away from E and it is not too difficult to see that k = 1 from the Riemann–Roch formula. Lastly, we compare these
upstairs on Bl.

KBl +C =π∗(KA2 +C )−E .

The coefficient of E , −1, we call the discrepancy of the pair (A2,C ).

In general, for a normal variety V such that V +∆ is Q–Cartier (so that intersections / pullbacks / etc. are well
defined) where ∆ is an effective Q–Cartier divisor on V and f : U → V is a birational morphism with exceptional
divisors Ei we can write

KU +∆= f ∗(KV +∆)+∑
i

a(V ,∆;Ei )Ei .

Then the discrepancy of the pair (V ,∆) is the number

discrep(V ,∆) = inf
E

{a(V ,∆;E)|E exceptional over V },

where exceptional means that codim( f (E)) Ê 2 and f (E) = ;. Note that the definition is independent of of f ,
indeed we only need to examine the ‘log resolution’, that is the resolution of the pair where the support of the strict
transform of∆ and the exceptional locus can be locally given by the equation x y (i.e. has simple normal crossings)
and U is smooth. Then we say that the pair (V ,∆) is terminal, canonical, (purely) log terminal (plt), log canonical
(lc) if discrep(V ,∆) is > 0,Ê 0,>−1,Ê−1, respectively.

Example 3. For ∆ = 0, a curve is plt if and only if it is smooth and lc if and only if it has at worst nodal singulari-
ties. A surface is terminal if and only if it is smooth and canonical precisely when it has at worst Du Val (or ADE)
singularities.

Further details can be found in [Kol97, KM98, KSC04].
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Measuring singularities: local lct. The discrepancy is not refined enough to discern the severity of all singularities
however, as we’ll see in the following example if discrep(V ,∆;E) >−1 then discrep(V ,∆;E) →−∞.

Example 4. Let’s modify our previous curve C ⊆ A2 to be now given by the zeros of x(x + y)(x − y). After one
blowup at the origin the pullback of C is given by π∗(C ) = C +multiO(C )E = C + 3E and so discrep(A2,C ;E) =
−2. However, now on successively iterating blowups at a smooth point of E \ C we find that discrep(A2,C ;E2) =
−5,discrep(A2,C ;E3) =−21, . . . where E2 and E3 are the exceptional curves of the second and third blowups as the
multiplicities of the new exceptional curves quickly explode. It is not hard to see that discrep(A2,C ;Ei ) −−−→

i→∞
−∞.

To rectify our inability to measure singularities with this behaviour, we observe that (A2,C ) is not lc whereas
(A2,0 ·C ) is. Thus there exists a maximal threshold λ such that (A2,λ ·C ) is lc. Hence, with V and ∆ as above, we
define the (local) log canonical threshold at a point P ∈V with respect to a divisor ∆ to be the number

lctP (V ,∆) = sup{λ ∈Q|(V ,λ∆) lc at P } ∈ [0,1].

For our previous example, we wish (1−3λ) Ê−1, that is λÉ 2
3 . Hence, lctO(A2,C ) = 2

3 .

It is worth noting here that in Magma there exists the function ResolutionGraph() that returns the log reso-
lution of an affine curve at the origin, whose algorithm works via Newton polynomials (see [KSC04] for details on
this method).

Measuring singularities: global lct. Back in our general setting we may define the lct of a log pair globally by
setting

lct(V ,∆) = inf{lctP (V ,∆)|P ∈V }

= sup{λ ∈Q|(V ,λ∆) lc }.

Expanding on our previous example again we have the following.

Example 5 ([CPS08, Example 1.1.3]). Let D be a cubic curve on the projective plane P2. Then

lct
(
P2,D

)=



1 if D is a smooth curve,

1 if D is a curve with ordinary double points,

5/6 if D is a curve with one cuspidal point,

3/4 if D consists of a conic and a line that are tangent,

2/3 if D consists of three lines intersecting at one point,

1/2 if Supp
(
D

)
consists of two lines,

1/3 if Supp
(
D

)
consists of one line.

Calculating the global lct on Fano varieties. On Fano varieties we have an obvious choice of divisor to choose for
our global lct definition, the anti-canonical divisor. Moreover, to mimic Tian’s original α–invariant definition (see
[CS08, Appendix A]) we also consider the bi–regular action of a finite1 group G on our Fano variety V and define
the G-invariant global log canonical threshold of

(
V ,G

)
to be the number

lct
(
V ,G

)= inf
{

lct
(
V ,∆

)∣∣∣∆ is an effective G-invariantQ-divisor on V such that ∆∼Q −KV

}
= sup

{
λ ∈Q

∣∣∣ the log pair
(
V ,λ∆

)
is lc for all G-invariantQ-divisors 0 É∆≡−KV

}
.

The above definition of the log canonical threshold is, in practise, difficult to work with. To calculate these
thresholds, as we’ll see below, we look in the pluri-anti-canonical linear systems for the ‘worst’ G-invariant divi-
sors (i.e. those with the smallest log canonical threshold) and prove that they realise the global G-invariant log
canonical threshold. It makes sense then to split the definition with an intermediate definition as

lctm
(
V ,G

)= sup

{
λ ∈Q

∣∣∣ the log pair
(
V ,

λ

m
∆

)
is lc for all G–invariant divisors ∆ ∈ |−mKV |

}
.

Then
lct

(
V ,G

)= inf
{

lctm
(
V ,G

)∣∣∣m ∈N
}
Ê 0.

Note that when |−mKV | contains no G-invariant divisors, lctm
(
V ,G

)
is defined to be +∞. Write lct(V), etc. when

G is trivial.

To date, no Fano varieties with non-rational global log canonical thresholds have been found. We expect this
property to hold for all global log canonical thresholds. Furthermore, we expect that the global log canonical
threshold is realised by a divisor in one of the pluri-anti-canonical linear systems (see [CPS08] and [Tia90]). These
divisors, numerically equivalent to the anti-canonical divisor, whose log canonical threshold realises the global
log canonical threshold are called wild tigers. In this colourful language of Keel-MacKernan ([KM99]), we say that

1We can consider also the action of a compact group by altering the definition of the lct to look not at G–invariant divisors, but G–invariant
linear systems.
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the calculation of global log canonical thresholds is, in part, the hunt for wild tigers (cf. [CP02]). In [Wil10] the
following conjecture is confirmed for the case where

(
X ,G

)
is a smooth del Pezzo G-surface and G is finite.

Conjecture 6. For a Fano variety V , let G be a finite subgroup of Aut(V ). Then there exists an effective G-invariant
Q-divisor, ∆∼Q −KV such that lct

(
V ,G

)= lct
(
V ,∆

) ∈Q.

We conclude this section by exemplifying the above definitions, showing that lct(P2) = 1/3.

Example 7. We first examine the linear systems Lm = |−mKP2 |to find the smallest m such that Lm contains G–
invariant divisors (of course G is trivial in our case). Then, from Example 5 we see that as −KP2 ∼ 3L where L is a
line on P2, L1 is non-empty and it follows that lct1(P2) = 1/3. Next we must prove a special case of Conjecture 6,
which in general is difficult however with a few tricks and the use of Nadel–Shokurov Vanishing (see e.g. [Wil10],
Vanya paper) can be achieved in many cases. For our case we may do the following: suppose that there exists
λi nQ such that lct(P2) <λ< lct1(P2) = 1/3. Then, from the definition, there is an effectiveQ–divisor∆ numerically
equivalent to −KP2 such that (P2,λ∆) is not lc. Write ∆= 3D for some divisor D , then also (P2,D) is not lc. Hence
there exists a point P ∈ Supp(D) such that multiP (D) > 1. However, for a general line L 3 P we have

1 = L ·D Ê (multiP (L))(multiP (D)) > 1.

3. AIDING THE CALCULATION OF α–INVARIANTS IN MAGMA

We continue now by looking at some newly implemented functions in Magma. These tools now available are
to aid the computation of global group–invariant log canonical thresholds, namely: finding the group–invariant
parts of Riemann–Roch spaces, which for us corresponds to finding invariant curves and linear systems in the
pluri–anti–canonical linear system of some del Pezzo surface; calculating local and global log canonical thresholds
of curves; and computing some subgroups of the full automorphism group on cubic surfaces by finding their
Eckardt points (points where three lines contained in the surface meet at a single point).

Actions on Riemann–Roch spaces. For a finite group G , given the equations of a variety V ⊆ Pn and an explicit
bi–regular action of G on V (i.e. generators acting on the homogeneous coordinates of Pn) we have an explicit
action of G on the Riemann–Roch space of D , H 0(V ,D) (i.e. some matrices corresponding to the generators) for
some effective divisor D . We can determine if this action on H 0(V ,D) is irreducible or not, and if not, how it splits.
The invariant sub-spaces correspond to G–invariant curves Ci (or G–invariant (sub–)linear systems of curves) in
the complete linear system |D|. To this end we implemented the following functions:

• InvariantPolynomials()
Input:Projective SpaceP, sequence S of generating matrices for the action of a group G onP, integer
d .
Output: Equations of G-invariant divisors and generating divisors of G-invariant linear systems in
Proj

(
H 0(P,OP(d))

)= |−dKP|.
Algorithm:

∗ Form the matrix group MG corresponding to the generators in S;
∗ construct the G–module obtained by the action of MG on the homogeneous polynomials of

degree d in the coordinate ring of P;
∗ find the indecomposable summands of the G–module and for the one-dimensional summands,

the corresponding equations of the divisors on P;
∗ calculate the eigenvalues of each of these one dimensional summands and determine which,

if any, agree across all the generators of MG ;
∗ return the G–invariant divisors and group together any divisors compatible under the action

(these may form G-invariant linear systems).
• ActionOnDivisor()

Input: Map g : V →V of a variety V , Divisor D on V .
Output: g (D).

• ActionOfElementOnRiemannRoch()
Input: Map g : V →V of a variety V , Divisor D on V .
Output: Action of g on H 0(V ,D), γ : H 0(V ,D) → H 0(V ,D).

Log canonical thresholds of curves. As described in Section 2, we can calculate the lct of a variety with the knowl-
edge of its log resolution. Building on the function ResolutionGraph() we implemented the following.

• LogCanonicalThresholdAtOrigin()
Input: affine curve C
Output: lctO(C )
Algorithm:

∗ If C is reduced, then we use ResolutionGraph()
∗ If C is non–reduced, then we find the multiplicity of the components of C passing through the

origin using either RemoveHypersurface() (which factors out the equation of the component)
if the curve is a hypersurface, or by using Colon ideals if not.

• LogCanonicalThreshold()
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Input: curve C (affine or projective), point P
Output: lctP (C )
Algorithm: we work on an affine patch, translate the point P to the origin and use
LogCanonicalThresholdAtOrigin().

• LogCanonicalThreshold()
Input: curve C (affine or projective)
Output: lct(C ) (over base field of C )
Algorithm:we compute the singular points {Pi |i ∈ I } of C over the base field usingSingularPoints(),
run LogCanonicalThreshold(C,P_i) for each i ∈ I and take the minimum possible value.

• LogCanonicalThresholdOverExtension()
Input: curve C (affine or projective)
Output: lct(C ) (calculated over all singular defined over extensions)
Algorithm: uses PointsOverSplittingField() and LogCanonicalThreshold().

Calculating Eckardt involutions for cubic surfaces. For a cubic surface (i.e. a del Pezzo surface of degree three),
there is a well known correspondence between Eckardt points and involutions of the surface. An Eckardt point P of
a cubic surface S is a point where three lines lying on the surface meet concurrently. Suppose S is smooth, blowing
up the point P yields a degree two del Pezzo surface T that is a double cover of the projective plane ramified in a
smooth degree four curve (see Section 4). The (Geiser) involution that interchanges the sheets of the double cover
can be composed with the blowdown to S to given an involution associated to the point P . As part of the del Pezzo
package described below we implemented a function to find all Eckardt points of a given cubic surface and using
this we added a function to return the associated involutions.

4. DEL PEZZO SURFACES

A variety with ample anti–canonical divisor (that is, some multiple of it defines an embedding) is called Fano,
well known examples are projective n–space, varieties of degree m in Pm and cubic surfaces. A dimension two
Fano variety is called a del Pezzo surface, which is either smooth or has at worst Du Val singularities. There is a well
known classification (see e.g. [KSC04]); a smooth del Pezzo surface is eitherP2,P1×P1, or the blowup ofP2 in r (< 9)
points in general position. Here general position means that no three lie on a line, no six lie concurrently on a conic
and no eight lie on a cubic where one is a double point. The degree d of a del Pezzo surface is the self–intersection
number of the anti–canonical divisor, d = K 2

S = 9− r . They have standard anti–canonical embeddings given when
r < 7. For r = 7,8 the anti–canonical divisor is not very ample (that is, does not define an embedding). For r = 7 we
have that −2KS is very ample and this yields a pluri–anti–canonical embedding in the weighted projective spaces
P(1,1,1,2) which is a double cover of P2. Similarly, for r = 8, −3KS is very ample, giving an embedding inP(1,1,2,3)
that is a double cover of the quartic cone P(1,1,2).

Together with Gavin Brown, Martin Bright and Steve Donnelly we implemented the following functions.

• IsDelPezzo()
Input: scheme Y
Output: boolean b and (pluri–)anti–canonical embedding ϕ
Algorithm: the function makes the following checks

∗ is the dimension of Y two?
∗ is K 2

Y ∈ {1, . . . ,9}?
∗ is the dimension the linear system |−KY | = K 2

Y ?
If the answer to all the above is true then it calculates ϕ and returns true.

• PointsInGeneralPosition()
Input: list of points L
Output: boolean (optionally returns the offending lines / conics / etc.)
Algorithm: calculates the set of all lines, conics and cubics with a double point in L and compares
their number to the maximal possible.

• DelPezzoSurface()
Input: list of points L
Output: del Pezzo surface S
Algorithm: checks the points of L are in general position using PointsInGeneralPosition(). For
|L| < 7, forms the linear system |−KP2−P1−. . .−Pr | i.e. the linear system of cubics passing through the
points of L and returns the image of the associated map. For |L| = 7, computes |−KP2 −P1−. . .−P7| as
before and also finds a section s of |−2KP2 −P1− . . .−P7| not given by sections of |−KP2 −P1− . . .−Pr |
and returns the image of the map given by three sections of |−KP2 −P1− . . .−P7| and s. For |L| = 8, as
for |L| = 7 but we find two sections in |−KP2 −P1 − . . .−P8|, one in |−2KP2 −P1 − . . .−P8| and one in
|−3KP2 −P1 − . . .−P8|.

• EckardtPoints()
Input: cubic surface S
Output: list of Eckardt points L
Algorithm: computes the corresponding Hessian surface H using HessianMatrix() and returns
points lying on both H and S.
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