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Introduction

One of the main problems in algebraic geometry is the classification problem; classify, up to
isomorphism, all the algebraic varieties. The first step towards this goal is to solve the weaker
problem; classify, up to birational equivalence, all the algebraic varieties. The natural beginning to
this is to gain an understanding of the simplest varieties — projective spaces. Rational varieties are
their closest relatives and it is these, together with unirational varieties, that we consider here.

Recall, that aational varietyis a variety birationally equivalent to a projective space. That is,
there exist mutually inverse rational maps with coefficients in a kgldbm the variety to a projec-
tive space and back. Equivalently, as each of the rational maps is dominant (i.e. surjective on open
subsets) the pullback defines an inclusion of the function fields. Hence a variety is rational if, and
only if, its function field is isomorphic to the field of rational functionsirvariable(x, ..., Xn),
i.e., the function field of a projective spake.

A unirational varietyis one covered by a rational variety. That is to say that there is a dominant
rational map, with coefficients in a field from a projective space to the variety. Again, the pull-
back will define an inclusion of the function field of the variety in the field of rational functions
in n variables, whera is the dimension of the variety. Thus, a variety is unirational if, and only

1The function field of a variet¥X is defined to be the field of all rational functions Xn
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if, there is some rational function field such that the field of rational functions of the variety is
contained inside.

One of the first things to note, beyond the trivial observation that any rational variety is unira-
tional, is that any variety birationally equivalent to a unirational variety is itself unirational. Thus,
unirational varieties make up several birational equivalence classes, with rational varieties one of
these. A natural question to ask is; are there really several distinct equivalence classes correspond-
ing to the unirational varieties, or just one — corresponding to the rational varieties? Put another
way; are all unirational varieties rational? Put in yet another way; are all non-trivial subfields of
the field of rational functions in fact isomorphic to the field of rational functions?

This is the question liroth posed in 1861, which became known as th@rdth Problem’. It
went on to inspire many great mathematicians and is seed for much research. The answer to this
question is of course negative in general, and can be summed up in the following table.

dim any fieldk alg. closedk of char.0 | alg. closed of char. p
(i.e.C) s.t.k(xq,...,X)/Kis a
separable field ext.

1 + + +
2 - + +
>3 ) ) )

Where '+’ indicates that the answer to the question is affirmative and -’ indicates that the an-
swer is not necessarily affirmative. We shall go through these results in detail in what follows.

We focus, in each of the chapters, on th&dth problem in a different dimension. Following
this introduction, chapter one discusses the case of curves; thisathls theorem, from which we
get the affirmative answer indicated in the table above. In chapter two we discuss the case of unira-
tional surfaces and examine some rationality criterion, namely Noether’'s lemma and Castelnuovo’s
rationality criterion. After which we look at our fist counterexamples to theoth problem. The
third chapter looks at higher dimensions. More specifically, we examine three-folds and see what
obstructions there are for unirational three-folds to be rational in general. Finally, we include an
appendix of some well known results that we assume in the course of this survey.

2Inspired by a table on the first page of [Katsura].
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1. Luroth’'s Theorem

LUroth’s theorem, as is often the case in the domain of algebraic geometry, may be stated in the
language of algebra or of geometry. Firstly, we shall state it in algebraic terms and then reformulate
the theorem into the language of geometry.

Theorem 1. (Luroth) Suppose we have an inclusion of fidtds L C k(t), wherek # L andk(t)
is the field of rational functions in one varialieThenL is isomorphic tok(t).

What does this mean geometrically? SupposeXhatP" is a unirational variety of dimension
one. Then there exists a dominant rational npagP! --» X, that is to say that the image ¢fis
dense inX. Thus, the pullback map defines an isomorphic inclusion

¢* 1 k(X) — k(P1)

Recall that for any (quasi-)projective varietyand any open subset C Y we havek(U) = k(Y).
Here,Al C P! is open and s&(P!) = k(Al) = k(1) for some variable.

So it is then that we find ourselves in the situation @fdth’s theorem; if we assume tht
is not a point, so thak(X) # k, then we conclude tha(X) is isomorphic tok(P!). Hence the
condition that a one dimensional variety be unirational automatically qualifies it as being rational.

In keeping with the spirit of viewing results from both an algebraic and geometric point-of-view,
we give below a proof of liroth’s theorem from both sides; 1.1 for the geometric and 1.2 for the
algebraic.

1.1. Proof of Luroth’s theorem via Riemann-Hurwitz and Riemann-Roch

Let C be a unirational plane curve. We desire to show that it must, in fact, be rational. By
definition, there exists a dominant rational ngapP? --» C. We use the Riemann-Hurwitz formula
(see Appendix 4.3) to obtain

X(P*) = Nx(C) —ramy
whereN is the degree op.

Thus,
2 —20gp1 = N(2—20c) — ramy
that is,
1 ramy
NN

i i - i _ 1 ramg
Since the genus of any curve is a non-negative number araags> 0 we havel — § — — = <

1. In conclusionC is of genus zero and hence a rational curve. O
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1.2. An algebraic proof of Liiroth’s theorem

We now sketch an elementary algebraic proof dfdth’s theorem. For details see [Waerden]
Section 63.

Considering any element € L \ k, we observe thdtis an algebraic element &fA ) and so an
algebraic member df. Next, examine the polynomial
f(z)="+a12" 1+ +a, e L[Z

where theg; are rational functions i. Multiplying through by the lowest common denominator
yields polynomials and we may write

f(x,2) = bo(X) 2"+ b1 ()" 14 - +bn(X)
Let the degree of with respect toc bem.

Note that not all the coefficientg = % in f(x) can be independent &f since that would imply
thatx is algebraic with respect ta Thus at least one of the terras= 6 must be dependant on

To complete the proof, one uses elementary field extension properties to shqw tiat n,
and(ii) 8, as a function ok, is of degream. It follows that

k(x) : k(6)] =m=[Kk(x) : L]
and ad D k(60), we havelL : k(6)] = 1. Therefore
L=Kk(0) =k(t)
by a change of variables.

2. The Luroth Problem in Dimension Two

Surfaces provide us with the first counterexamples to theth problem. Here we shall explore
some invariants that allow us to decide when a surface is rational, much like the genus of a curve
in the one-dimensional case. This will lead us naturally taleoth Theorem for surfaces, with
some restrictions on the underlying field. We will then go on to show some explicit examples of
surfaces that are unirational, but not rational. Thus, demonstrating the necessity of the restrictions
on the Liroth theorem for surfaces.

2.1. Preliminaries

Before starting, let us recall some basic facts we shall need in this exploration (see [G-H], for
example); Hodge numbers are symmeth€d(X) = h%P(X) for some varietyX andhP9(X) is
defined byhP9(X) = h9(QP[X]). The Hodge numbersP? are birational invariantshP9(X) =
hO(QPX]) = hP(QO[X]) = hP(Ox). Many of these invariants were discovered before the modern
theory and some picked up names along the way, which we give nowgtthraetrical genusf a
n-fold X is the numberpg(X) = h"9(X) = hO(Q"[X]) = h%(Kx), whenn = 1 andX is a smooth
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curve this is the ordinary genus of the cuiyeX). Theirregularity of an-fold X is the number
q(X) = ht9(X) = hO(QL[X]) = h}(QO[X]) = hl(0x). The Plurigener&,(X) of a varietyX are the
dimensionsho(nKX), whereKy is the canonical divisor oK.

For any curveC on a surfacé&, we haveg(C) < CKC+CC + 1. Indeed, for a smooth cuné by
the Riemann-Roch formula applied to the canonical diviggfAppendix 4.1) we have,

1-9(C)+degke = {(Kc)—£(Kc—Kc)
= g(C)-1

that is
degKc) = 29(C) - 2.

Together with the adjunction formula

Kec = (Ks+C)lc

(Appendix 4.2) we see that
C-Ks+C-C
g(C) = % 1
If C is non-singular then by the Riemann-Hurwitz formula (Appendix 4.3)

C-Ks+C-C
g(C) = %Jrl—ramf

where the mag is a map given by a global rational function 8ti.e. if f € k(S) written locally
asf = g/h, thens— (g(s) : h(s)) gives a map fronSto PY).

We define thevirtual genus r1(C), to be the numbe?% +1, in what follows this will also
be referred to as the adjunction formula. The relationship between the genus and the virtual genus
is clear; if¢ : C — Cis the normalisation of the cur@thenr(C) = g(C). In particular, since(C)
is always non-negative, we have from the above (&) is always non-negative. Furthermore,
since a curve is rational if, and only if, it has genus zero, we see that a curveti@ih= 0 is
rational.

Finally, before moving on to look at rationality criterion, we present a criterion for determining
when a curve is an exceptional curve of the first kind — and so may be blown down.

Corollary 2. (Castelnuovo-Enriques criterion for blowing down)
An irreducible curveC on a surfaceSmay be blown down if, and only if,

C-C<0 and Ks-C < 0.

Proof.
By the adjunction formula,



(A\VARYS
o

WhenceC-C=Kg-C=—1,if C-C<0andKs-C < 0. Thusm(C) = 0 andC is rational with
self-intersection-1. That is to sayC is an exceptional curve of the first kind and so we may blow
it down. O

2.2. Rationality criterion

Next, on towards the promised rationality criterion.

Lemma 3. (Noether’'s Lemma) A surface is rational if, and only if, it contains an irreducible ra-
tional curveC with h%(C) — 1 = dim|C| > 1.

Proof.
The forward implication is clear; i : S--» P? is a birational map, then we can pullback a general
hyperplaneH, that is takeC = ¢*H.

Conversely, suppose thatc Sis an irreducible rational curve withim|C| > 1. Choose a pencil
{C) }» epr Which containgC. We claim that on blowing u® sufficiently many times at the base
points of the penci{C, }, .1 We obtain a surfac& on which the proper transform{€, }, .1 of
the curvesC, form a pencil without base points. Clearly all g will remain rational.

Indeed, suppose the linear systgbn has a base point € S of multiplicity r (i.e. p has mul-
tiplicity r on a generid € |C|). Let 0 : S— Sbe the blow up oS at p, with E = o—(p) the
exceptional divisor. Then

~

D=o"YD)-rE
forD € |C|.

C has self-intersection
C.-D = (o7YD)—rE)(c"}D)—-rE)
= o YD).-c7}(D)-2rE-0}D)+r%E-E
= D-D-r?  (sinceE?= -1, 0 }(D) ~ D andDNE = D)
< D-D

Now we construct a sequence of blowups S — S_; and linear systemi€;| on S as follows:
Let 01 : S — Sbe the blowup oS at the base points ¢o€| and|C;| the proper transform d€| in
6



S1, 021 S — S be the blowup 0F,; at the base points ¢€; | and|C;| the proper transform g€ |
in S, etc.

If every system were to have base points, then we would have
D-D>D;1-Dy>Dy-Dy>---
but theD; are effective, so thdd; - D; > 0. Hence for somethe linear systerft;| is base point free.

Therefore, we may assume from the start tBabntains a base point free penf@) }, cp1 Of
rational curves, not all reducible.

We show now that we may find a surface birationaBtwith a pencil of irreducible disjoint
rational curves. Such a surface, callegemmetrically ruled surfages rational and the proof will
be complete. We shall use the Castelnuovo-Enriques criterion for blowing down to this end.

Any point of intersection of two distinct curvés, ,C,, € {C) }, cp1 is a base point ofC, }, cp1.
Thus,
Cy-C=C,-Cy=0.
SupposeC, € {C) },pt is reducible, then we may writ€, = 5 a,C, with all a, > 0 andC,
irreducible. Since eadf, is disjoint from anyC, ~ C, for A # u,

O:CIJ 'CV - ZCIV/(CV/ Cv)
V,

However,C , -C, > 0 for v # v and saC, -Cy > 0 for somev # Vv'. It follows thatC, -C, < 0
for all v.

The adjunction formula applied to the rational cugeyields

m(Cy) = S .CM;KS.C“ +1=0
Thus
Cu‘KS: ZGVC\/-KS: -2
and so
Cy,-Ks< O
for somevy.

We have now both
CVO . KS < O and CVO 'CVO < O
and so, by the Castelnuovo-Enriques blowing down criterion, we may®@jgwown. Let$ : S—
S be the blowing down o€y,

Observe that every cury@,, other tharCy, is disjoint fromC,,. We see then that the curves
¢ (C,) form a base point free pencil of rational curves®n
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Repeating the argument; if any curgéC, ) is reducible then we may blow dow® along it.
Since we may blow down a surface only a finite number of times, a finite number of steps yields a
surfaceSand a birational mag :S--» S such that the curvag(C, ) form a pencil of irreducible
disjoint rational curves. Therefore we have shown Biatbirational to a geometrically ruled sur-
face and hence rational. O

From Noether’s lemma follows Castelnuovo’s criterion, which classifies all the rational surfaces
as those sharing two simple numerical invariants. This strong statement is proved, rather surpris-
ingly, from the repeated application of both the Riemann-Roch and adjunction formulae (with an
appeal to Noether’s formula (Appendix 4.4) in the final case). Immediately following the proof,
we deduce from this, thetlroth theorem for surfaces.

Theorem 4. (Castelnuovo’s Rationality Criterion, 1893)
A surfaceSis rational over an algebraically closed field if, and onlydf,S) = P>(S) = 0.

Proof.2 ([Kodaira]) If Sis rational then, as the plurigenera and irregularitP®re zero, we have
q(S) =P»(§) =0.

Proving the other implication is slightly harder. Firstly, note th&d dontains any —1)-curves
then we may blow them down to obtain a surface birationd tbat has none. We assume then
thatShas no exceptional curves of the first kind.

We wish to apply Noether’s lemma:

A surface is rational if, and only if, it contains an irreducible rational c@wath
ho(C) —1=dimC| > 1.

Thus, we wish to show th&contains a curve€ with g(C) = pyg(C) = n(C) = 0 anddim|C| > 1.

For the proof we transpose the problem slightly; siRg€S) = 0 we havepg(S) = 0. Indeed,
pg(S) = h?(0s) = h%(Ks), by Serre duality, and an elemente |Kg| yields an elemeni? € |2Kg,
butP,(S) = h%(2Ks) = 0 and sopy(S) = 0. Hence

X(0s) = h°(0s)—h'(0s)+h*(0s)
= 1-a(9+py(S
= 1

3Shown here is proof ovet, the theorem is true however, over any algebraically closed field. Over fields of
arbitrary characteristic this was first proved by Zariski (see [Zariski58-1] and [Zariski58-2]), for alternative proofs see
[Kurke] or [Lang]
8



By the Riemann-Roch theorem, applied to any ciwven S, we obtain

X(C) = X(08) + === Ks
that is
O(C) —h(C) =1+ & C_ZC'KS
thus
P > 146 C—2C-K3

If C is a rational curve an€-C > 0O, then by the adjunction formul&(C) = 1+ CC+TCKS

K -C < —2; henceh?(C) > 2 anddim|C|(= h%(C) — 1) > 1.

Therefore proof of the theorem is reduced to finding an irreducible c@isigch that
mC)=0 and C-C>0
The proof splits into three casdss- Ks < 0, Ks- Ks= 0 andKg- Kg > 0. We write belowK for
Ks.
Case: K-K=0.

Applying the Riemann-Roch formula teK
X(=K) = h(=K) =h'(—K) +h?*(-K)
(=K)(=K=K)
2

= X(0s)+
=1

and soh?(—K) +h?(—K) > 1.
By Serre duality,
h?(—K) = h°(K — (=K)) = h°(2K) = Px(S)
which is zero by assumption. Th(—K) > 1 and it follows that there exists an effective divisor
D linearly equivalent to-K, with D non-zero sinc& is non-trivial.

Let E be a very ample divisor 08* We may assume thaf(E — D) # 0. SinceE is ample we
have
E-K=—-E-D<O
henceE - (E+mK) = E-E+mE-K < 0for m>> 0. Suppose thd + mK were linearly equivalent
to an effective divisor, thek - (E +mK) > 0. This contradiction ensures thaft(E + mK) = 0 for
m>> 0.

Choose now an, such that

“E has the propertig$) E2 > 0 (i) E-C > 0for all curvesC on Sand(iii ) the linear systenE| has no base points,
ie |E| gives an embedding.
9



(i) °(E+nK) >0
(i) °(E+(n+1)K)=0
and letD’ € |E +nK| writing D’ = § a,C,. Then
K-D'=K-(E+nK)=K-E+nK-K=K-E<O0
HenceK - C,, < 0 for somevy. Applying the Riemann-Roch formula teC,,;
—Cyo- <_CV0 —K) -1 Cuo-Cup +Cy-K
> - >

X(—Cy,) = X(Os) +
that is
ho(_CV0> - hl(_CVo) + hz(_CVo) = T[(CVO)
thus
ho(_CVo) + hz(_CVo> = ho(_CVo> + hO<K +CV0> > n(CVo>

by Serre duality. But clearl®®(—C,,) = 0 and since + Cy, < K +D’, we have
hO(K 4+-Cyy) < h(K+D') = h%(K + (E +nK)) = h%(E+ (n+ 1)K)) =0
by our choice oh. Therefore
h%(—Cy,) +h?(—Cyp) = 0> (Cy,)

Thus
T[(CVO) — 0

asm(Cy,) > g(Cy,) > 0. By the adjunction formula
CVO : CVO +CV0 K
2

we see thaC,, -C,, > —1. The self-intersection d&,, cannot be-1 as there are no-1)-curves
on Sby assumption. Hendg,, - C,, > 0 and the theorem is proved in the caseK = 0.

0=m(Cy,) =1+

Case: K-K > 0.

Before proving the theorem for this case, we make a claim:
If E is any divisor orSthenh®(E + nK) = 0 for n>> 0. Indeed, choosgg large enough such that

K- (E4+nK)=K-E+npK-K <0
Suppose that®(E + mK) # 0 for somem > ng. LetD € |E +mK|, writing D = 5 a,C,. Then
K-D=K-(E4+mK) <K-(E+nK) <0
thusK - Cy, < 0 for somevy.

If Cy, - Cy, < Othen, by the adjunction formula, we would hakeC,, = C,,-C,, = —1. How-
ever, we assumed th&thas no exceptional curves of the first kind. Therefoyg C,, > 0 and so
Cy, - D’ > 0 for any effective divisoD’. SinceK -C,,, < 0 we see that fof > 0

(E+1K)-Cy, <0  wouldimplythat h(E+IK)=0.
10



This contradiction ensures the validity of our claim.

To start the proof of this case, IEtbe a very ample divisor with®(E +K) > 2 and choose an
n such that

h(E+nK)>2 and hYE+(n+1)K)<1.
Let D be a generic element ¢ + nk|. Then we claim that if we writ® = F + 5 y,C,, where
-Cy > 0for all v. Indeed, consider the reduced linear
system|D’| = |D - FJ; |D'| has onIy isolated base points. Blowing up at the base points yields a
linear systenjD’] with elementD’ = > yVC\,A Since any point of intersection betvve@ﬂ and
CV/ would be a singular point d’. It is clear that for a generic (and hence smoalmmecvA are
dISJOInt Thus

Cy, -Cy, =Cy, -D'=0
and saC,, -C, > Ofor all v, as we claimed.

Sinceh®(—C,) = 0, by Riemann-Roch applied teC,, we have

Cy,-Cy+Cy-K
ho(K +Cy) > =~ V; Y = 41=m(Cy)

but
hO(K 4+Cy) <hO(K +D) = h%(K + (E+nK)) = h°(E+ (n+1)K) < 1
by assumption. Therefore, eithafC,) = 0 or (C,) = 1.

If (C,) =0, then we are done &, -C, > 0. Suppose then, that(C,) = 1. Thenh®(K+C,) =
h9(K + D) = 1. LetD’ € |K +Cy| writing D' = B,E,. D’ is non-zeroD’ = 0 implies0 ~ K +C,,
which in turn implies thak ~ —C, so thatk - K =C,, -C,, < 0. Sincer(C, ) = 1, we have via the
adjunction formulakK - K = —C,, -C, henceD’-C, = (K+C,)-C, = 0. TheE, are irreducible so
thatC, -C, > O implies thatC, - E, > O for all u. Consequently on considerifij - C, we see that
forall u, E;,-Cy = 0. SinceK -C, < 0andK -K < 0we haveD’-K = (K+Cy)-K < 0and hence
Eyo - K < 0for someEy,,.

However,
0> Eyy- K =Epo (K+Cy) =ED =3 BuEy- Eyig > g B,
[n

Consequently, the adjunction formula appliedg yields
Epo-K=Ep-Epp=-1
that is to sayE,, is an exceptional curve of the first kind. Impossible!

Case: K-K <0.

5a fixed component dD| is a divisorF such thaD’ — F > Ofor all D’ € |D|, that isF belongs to the base locus of
Dl
11



Applying the Riemann-Roch formula teK,

S K-K+K-K

hO(—K) +h?(—K) > +1>1

but
h?(—K) = h%(K — (=K)) = h%(2K) = P»(S) = 0.

Thus| — K] contains a pencil of curves. LBtbe a generic element ¢f- K|. Then, by the above,
we may writeD = F + ¥ a,,C, whereF is the fixed component gD| andC, -C, > Ofor all v.

If D is reducible, that i® # Cq, then we have
h?(~C1) = h%(K+C1) =h°(C1—D) =h°(C1) —F = § avCy) =h’(— (a1 - 1)C1 —F — ; a,Cy) =0
v£1

and clearlyno(—Cl) = 0. Thus, by the Riemann-Roch formula fetC,

> Cl-Clél-K-Cl

0 +1=m(Cy)

and sor(Cy) = 0 and sinceC; - C; > 0 we are done.

Assume now thab is irreducible, that i = C;. Firstly, D-K = —D - D sinceD ~ —K and so
n(D) = 1.

If every very ample divisor oswere a multiple oK, it would follow that every line bundle on
Sis a multiple ofK, that is to say,
H¥(SZ)=H"(SZ)=Z
with ¢1(K) as a generator. Then by PoineatualityK - K = 1.

Using Noether’s formula (Appendix 4.4) we see that this is a contradiction:

K-K+x(S 1+3

Thus, we may choose a very ample divigoon Ssuch thak is not a multiple oK and further-
more, such thah®(E + K) > 1. SinceE-K = —E -D < 0° we observe thaE - (E +nK) < 0 for
n>> 0and soh’(E +nK) = 0 for n > 0.

Choose an integet such that
WPE+nK)>1 and h%E+ (np+1)K)=0.

Take now, a generic elemelt =S BB, of [E+ngK|. D’ must be non-zero, fd is not a multiple
of K. D id effective, so that
K'BV:—D'BV SO

5L ample and effective=-L-D >0
12



for all v. Again, we observe that
h%(K+By) <h®%K+D')=0 and h°(—B,)=0.
Applying the Riemann-Roch formula teB,,,

> By By +K-By

0
- 2

hencer(B, ) = 0.

K-By <0;if K-B, < —1, thenB, -B, = 0and we're done. IK-B, = —1, thenB, - B, = —1,
a contradiction. Consider then the case whér®,, = 0andB, -B, = —2.

Apply the Riemann-Roch formula to the divisor— B,

h°(b-B,)=h(D-B,) > 2D.D;BV'BV+1=D-D:K-K>O

and
h?(D—B,) =h%K —D+B,) =h°(2K +B,) < h%(2K +D) = h%(2K + (E+ngK)) = h°(E + (ng+2)K)
hence
h°(D-B,) > 0.
Let H € |D —By| and writeH = 3 yA,. H must be non-zero, for otherwise we would have
By ~D~KandtherK-K =B, -B, = -2.
Applying the Riemann-Roch formula teA,,

Ay-A,+K-Ay

ho(=Ay) +h?(=Ay) > 5

but
h2(—A,) = hO(K+A,) <hO(K+H)=h(—A,) =0
It follows that (A, ) = 0. However,
H-K=(-K—-By)-K=-K-K<0

so thatA,, - K < 0 for somevy. Therefore, eitheA, - A, = -1 or A, - A, = 0. A, cannot have
self-intersection-1 by assumption, thus, - A, = 0 and this completes the proof. OJ

2.3. A Luroth theorem for surfaces

Theorem 5. (Luroth Theorem for surfaces)
If a surfaceSis unirational over an algebraically closed fiekd such that the extensiddxs,X2)
overk(S) is separable. Then itis, in fact, rational ovier

13



Proof.

This follows immediately from Castelnuovo’s rationality criterion. Indeed, supposeStisat
unirational surface over an algebraically closed flelof characteristi® or thatk is algebraically
closed of characteristip and the extension d€(x;,xp) overk is separable. Either of these situ-
ations imply that the pullback of the dominant rational nigapP? --» Swill define an inclusion
¢*Q'[P?] C Q'[§. More specifically, these conditions &mexclude the possibility of the existence
of an inseparable map where each point is a ramification point (for exarmpieP over a field of
characteristiq).

Thus, if P(S) is non-zero, then the pullback of some non-zere Q?[g has to vanish oi?.
Hence the Jacobian ¢f must be zero everywhere — but this contradicts the factgth&l — V is
surjective, by the Implicit Function theorem. SimilarlygifS) = h'(Os) # 0 then the pullback of
a non-zero regular one-form will vanish &3, so that again the Jacobian ¢fwill be identically
zero. U

2.4. Counterexamples over fields of characteristic p >0

In [Zariski58-2] (see also [Katsura]), we see an example of a non-rational unirational surface
over a fieldk of characteristiqp > 3 which we shall present here to show the necessity of the re-
quirement thak is perfect’

Consider the affine surfacdefined by the equation

pi1, ot 0G+X)

f (X0, X1, %2) = X5 + X} + X5 5 =0

and the projective completioﬁof S OnSwe have

2 2
o PP pesp, 040 XP)

thus,
k(P?) = k(A?) = k(3P 35 P) = k(x0,35" P35 P) D k(x0, X1, %2) = K(S)
henceSis unirational.

However, observe that the regular two-form defined by

_dxondxe  dxoAdx
Cdffoxy X —x

is non-zero orS. It follows from Castelnuovo’s rationality criterion (Theorem 4) tigis non-
rational.

7Counterexamples can also be given in fields of characteristic 2 see, for example [Zariski58-2] or [Shioda].
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2.5. Counterexamples over algebraically non-closed fields

We claim that the cubic surfa&, given by
3Q+X+X3+X3=0

is unirational, but not rational ovép.

In working through the details and justifying this claim, we use the following results of Segre,
later reworked and improved, by Manin and Kuol(see [Kolar], [Manin], [Segre42], [Segre43],
[Segre51] or [C-K-S]).

Theorem 6. (Kollar, 2002§
A smooth cubic hypersurface of dimension at least two is unirationalloemd only if it admits
a k-point.

Theorem 7. (Segre, 1942Segre42|Restated, sef-K-S])))
No smooth cubic surface of Picard number one is rational &ver

Thus to proof of the claim is reduced to showing t8at(i) admits a&-point and (ii ) has Picard
number one.

Recall that &-point of a projective variet) is a pointx € X such that all the coordinates »f
are members of the fieki We see immediately that our surfagghas aQ-point, namely the point
(=1:1:1:1. Thus, by Theorem & is unirational over).

As is often the case proving the non-rationality of a variety is a difficult problem. To show that
the Picard numb@iis one, we appeal to a further theorem of Segre see ([Segre51]).

Theorem 8. (Segre, 1951) Le$ be a smooth cubic surface i and consider the action of the
Galios group of% on the 27 lines 08 . WhereK is a finite extension &€ such that the 27 lines of
S are defined oveK. The following are equivalent.

(i) The Picard numbepy(S) is one.
(i) The sum of the lines in each Galios orbit is linearly equivalent to a multiple of the hyper-
plane class ors.
(i) No Galios orbit consists of disjoint lines @&

The 27 lines on a cubic surface over an algebraically closed field are very well studied (see, for
example, [G-H], [Shafl] or [Reid]) and there is a wealth of literature on the subject. We recall
here, that for a smooth cubic surfaXelefined over an algebraically closed field by

GoX(S)—}— ale + C¥2X3—|— CYQ,X% =0

8Segre, [Segre51] in 1951, proved the restriction to the case Whgl@perfect infinite field and the k-point is not
an Eckardt point
Sthe Picard number of a variety is the rank of therbh-Severi group or equivalently, if the variety is smooth, the
rank of the Picard group
15



We may factor
(a0Xg + 01x3) + (0255 + a3x3)

into linear factors, distinct due to the non-singularityXgfas

l112l3 + mmpmg
this yields nine lines defined by the nine pairs of planes that contain them

{li = mj = O}ij
The other two pairingéaoxs + az2x3) + (13 + a3x3) and(aexs + azx3) + (a1x5 + a2x3) produce
the other eighteen lines ofu

In a similar fashion (following the example given in [C-K-S]), we factor
(¢ +3) + (G +3%)
as
(X2 +%2) (X1 + WX2) (X1 + W™X2) + (X3 + BX0) (X3 + BwXo) (X3 + BwXo)

wheref = V3 andw = e . This produces nine lines given, as before, by the pairs of planes
containing them. We consider the Galois orbits of these nine lines.

Fori =0, 1,2, the Galois group acts transitively on tBey'. Thus, the lines given by
{X14 X = 0;X3+ Bw'xo = O}

consist of one Galois orbit, comprising of three lines in the plgae-x, = 0}. In particular, none
of these lines are disjoint.

Considering the orbit of a line defined by
{X1+ wxz = 0;x3+ Bw'xg = 0}
for somei = 0,1,2. We observe that the permutation
B Bw— B’ — B
fixes w therefore the orbit of this line consists, in part, of all three of the lines defined by
{X1+ wxo = 0;X3+ Bw'xg = 0}
fori=0,1,2, furthermore they all lie in the planf; + wx, = 0} and hence cannot be disjoint.

On observing that the remaining three lines
{x1+ w2 = 0;x3+ Bw'xg = O}

for i = 0,1,2 can be obtained from these lines via the permutation interchartyingnd 8 w? so
that these three lines lie in the plafg + WXy = 0} and hence cannot be disjoint. We see that the
orbit consists of six lines lying in two planes.

Consideration of the other two pairings of the equation defining our surface, we find two more

orbits of three lines in the same plane and two orbits of six lines in two planes. None of the orbits
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consists of disjoint lines, hence the Picard numbe®;aé one.

What was special about our surfa®® As can be seen from the above it is tB& not a perfect
cube. Thus, with the above reasoning we may conclude that any cubic surface defined by
a3+ 3+ +38=0

wherea is not a perfect cube is non-rational.

In fact, Segre (see [Segre51]) generalised this example to obtain the stronger result below.

Theorem 9. (Segre, 1951) Any surface defined o{geby the following equation
AoXg -+ A1 + 02%3 + X3 = 0
has Picard number one if and only if, for all permutatiomf four letters, the rational number
do(0)%o(1)
Uo(2)%0(3)
is not a perfect cube.

2.6. The Noether-Fano method

Before we go on to discuss higher dimensions, let’s look in more detail at Theorem 7. The
method of the proof has become known as the Noether-Fano method; it can be applied in higher
dimensions and leads to the proof of the non-rationality of the smooth quartic three-folds.

Our first observation and the starting point of the proof; the Picard group of our cubic surface
S3 is generated by the class of a hyperplane sedtipar, equivalently, by the anti-canonical class
— since by the adjunction formula we ha¥ass ~ —H. Furthermore, the hyperplane section class
H is not divisible. Indeed, iH = mD for some integem and divisorD, thenH? = n?D?. Since
H?2 = 3, mmust be one.

Suppose Theorem 7 is false. Then there exists a birationalgméef --» P? defined ovexk.
Associated ta is a mobile linear system, that isl" is a linear system with no fixed curves. Since
the Picard group o%; is generated by the hyperplane clasd” must be contained in the complete
linear systemdH| for somed. To prove Theorem 7 then, we prove the following.

Theorem 10. If S3is a smooth cubic surface containedHi, then there is no mobile linear sys-
tem onScontained indH|.

Although this new theorem doesn’t have the appeal of Segre’s theorem above, we have reduced
the proof to that of one over an algebraically closed field. Indeed, we may assunkadizdge-

braically closed since a linear system is defined over a non-algebraically closed field even if its
17



base points are not.

To begin the proof of Theorem 10, suppose there exists a mobile linear siysterdH| for
somed. Thenl™ defines a birational magr : S; --+ P2 and we may assume thiats algebraically
closed. LetPy,. .., be the base points &f with multiplicities my, ..., my including the possible
infinitely near base points. We claim that some base point must have multiplicity greatek than

Before proving this claim, a digression. Suppose tha a mobile linear system on a surface
S If Ais base point free, then defines a regular mag, and the self-intersection af, is
N? = deg p)deq Wa(S)). Suppose thah has a base poii of multiplicity m. With ease we may
check thatrt*C = C’' + mE whereC is any curve or§, S —™ Sis the blow up ofSatP, C' is the
birational transform o€ andE is the exceptional divisor. Thus,

N=mA—mE and Kg=mKs+E
and so
N?=N—m? and AN -Kg=A-Ks+m.

In our casep, ..., P are base points with multiplicitiesy, ..., m,. On iterating the process
above we have

M=r?-ynm and TI-Kg=T-Ks+3ym
whereS — Sis the blow up ofSat the all base points df. Moreover, sincé”’ is base point free
we see thal2 = 1 and thal™’ -Kg = ¢/ H - (¢ Ks+ Er/) = H - Ks = —3. Hence

1=r?-Snf and —3=T-Ks+ym.
From this we see that
Ym=3d-3 and ynf=3d°-1
Now suppose that for afthy, m < d. Then
3°—1=Snf<dym=d(3d-3)=3d*-3d <3d°-1
a contradiction! So our claim holds.

Next, letP be a base point df of multiplicity greater thard. Without loss of generality, we
may assume tha& is a point onS (and not an infinitely near base point) since the multiplicity of a
base point is greater than or equal to the multiplicity of a base point infinitely near. We also deduce
that P cannot lie on any line its. Indeed,” C |dH| and soL -C < d for all linesL on Sand all
Cerl.L-C=Ygecn (MultigC) so no pointQ € C can have multiplicity greater thath

For the completion of the proof we proceed by induction; we find a birational automorphism of
S(in fact this turns out to be a birational involution) that taket® a linear system contained in the
complete linear systema’H| with d’ < d — contradicting the minimality od.

We are looking now for an birational automorphism of our surf8¢eThe construction has a
simple analogue for a cubic plane curve which we shall examine firsC beta plane cubic curve

and fix a pointP € C. For all pointsQ € C sendQ to the unique point of intersectid® between
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C and the line througl? andQ. To extend this to an involution 0@ we send the poinP to the
point of intersection between the tangent lin€adt P and the curv€. This is now a well-defined
involution onC.

By analogy, let us try to construct an involution,on Sz in this way. First fix a poinP € S3
and send any poir® € Sz to the unique third point of intersection betwegyand the line through
Q andP. This is well defined if we choose our poiRtsuch that there is no line d& through
P, but we confirmed above thati is a base point of of multiplicity greater thard then this is
true. To extend this in the same way as before we run into a small problem. Namely, there are
many lines tangent t8z at P — in fact, there is a whole tangent planePatThe resolution of this
problem is simple — we blow u§; at the pointP. Let S —" S3 be the blow up 0f; at the pointP.
Now, downstairg is a well-defined involution outside of the poidtand the curvd® = SSN TpSs.
Upstairs, onS, we may take any point on the proper transfornDofD’, and map it to a unique
point on the exceptional divisd of m. Whence, we have a well-defined involutiohon S. We
have the picture:

whereq is the projection map onto the second facRsr, of Sx P2,

The mapq: S --» P? can be described as follows. FQre S\E we may think thaQ € S, as
the SandS are isomorphic outside of the exceptional divisor, théq) is the linelL in P? through
P andQ. ForQ € E, we may think ofQ as a direction througR, andq(Q) is the lineL throughP
in the directionQ.

The fibre ofq over a pointM € P? consists of the two point®; andQ> that together witHP
make up the intersection & L. The fibre is ramified when the two poin@ andQ, coalesce,
i.e. Q1 = Q». Let’s find this ramification locus. We are free to choose coordinates, we choose them
such that thé is the point(0 : 0: 0: 1). Locally, Sz is given by an equation of the form

fl(xa \ Z) + fZ(Xa Ys Z) + f3(X7 V2 Z) =0

wherex,y, z are locally coordinates and thig are homogeneous of degreeWe may describe
any lineL throughP by the parametric equation(®t, t, yt), which corresponds to the point
(a:B:y) € P2 The intersectioh. N S is given by the solutions to

tf1(X,y,2) +12f2(x,y,2) + t3f3(x,y,2) = 0.
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t = 0 corresponds to the poilR and Q1,Q> may be found using the quadratic formula. The
ramification locus is therefore given by the discriminant

f2_4f f3=0.

Note also that this is smooth as b&handP? are.

Before we complete the proof, let's make a couple of observations abo#irstly, 7’ is the
unique non-trivial Galois automorphism of tBe 1 coverS of P2. Furthermorer’ interchange&
the exceptional divisor and’, the proper transform d. Also we can see thatr'H —E| = |g*(L)|
whereL is any line inP? andH is a hyperplane section &.

To recap, we have a base pohbf a mobile linear systern C |dH| with multiplicity m > d.
Let " = "I — mE be the proper transform éf underr. We are looking for a contradiction and
we hope to findd’ < d such that™ C |d’H|, which by induction will prove Theorem 10. Since
" C |dH| we have the following,

[+ (m—d)E = 1'T —dE C |1 (dH) — dE)| = |d(T"H — E)| = |q7 (dL)].

The involutionT’ preserves the pullback of any linear system frBfa Thus, on application
of the involutiont’ the linear systeni’ + (m— d)E is mapped to another linear system inside
|g*(dL)|. We see that upstairs

U(M+(m—d)E) = 7(I") + (m—d)D’' C |g*(dL)| = [d(rT'H — E)| C | (dH)].
Downstairs ors3 we have,
(M) +(m—d)D C |dH|.
D = SN TpSs is a hyperplane section & hence,
() € [(d—(m—d))H|.
However,m > d and so we have
() C |[d'H|

with d’ < d. This completes the proof of Theorem 10 and hence of Theorem 7.

Manin proved in 1966, arguing in much the same way as above (see [C-K-S] 2.1), the following
theorem. This was the starting point for his joint work with Iskovskikh on the non-rationality of
the smooth quartic three-fold that we will look at below before going on to examineitreh
problem in higher dimensions.

Theorem 11. (Manin, 1966)
Two smooth cubic surfaces defined over a perfect field of Picard number one are birational to one
another if, and only if, they are projectively equivalent.
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3. The Liroth Problem in Higher Dimensions

Many years after Castelnuovo’s rationality criterion, thigdth problem in dimensions greater
than two remained an open problem. In 1971 three independent papers were published giving
counterexamples to thelikoth problem - firstly [I-M] followed by [C-G] with [A-M] in Novem-
ber of the same year. Indeed, over any field it is not true, in general, that a unirational variety is
necessarily rational.

To summarise the different approaches given in [I-M], [C-G] and [A-M]; Artin and Mumford
in [A-M], following a suggestion of Ramanujam, exploited the fact that the torsion subgroup of
the third integral cohomology group of a smooth complex variety is a birational invariant and in
particular is zero if the variety is rational. Artin and Mumford explicitly constructed examples of
unirational varieties, in all dimensions over fields of any characterigti) (with non-zero torsion.

Over ten years earlier, in 1959, Serre had shown that unirational and rational three-folds share
almost all cohomological properties — but a few differences slipped through; the torsion subgroup
being one. Another was the 'intermediate Jacobian’ an Abelian variety obtained from the Hodge
decomposition of the third integral cohomology group. The intermediate Jacobian plays a similar
role to the Jacobian variety one uses in the study of divisors on a curve. Clemens and Griffiths
in [C-G], showed that a rational three-fold satisfies a certain relationship on the intermediate Ja-
cobian, they then go on to show that no smooth cubic hypersurface satisfies this relationship —
hence no smooth cubic hypersurfac@fhis rational. In an appendix they remind the reader of the
unirationality of cubic three-folds, giving a short construction.

In 1960, Segre showed that the smooth quartic threeXgldiefined by
X3+ X0 + X — 6X9G + 3G + X5 + 3% = O

is unirational, whereg, X1, X2, X3, Xa are homogeneous coordinatesih

Let's take a brief look at constructing such unirational three-folds (see [Marchisio]; take a ra-
tional surfaceS C X4 and fix both a poinp € Sand a hyperplangl C P4. Take the tangent cone
Cp(X4) to X4 at p and letQp be the intersection of,(X4) with the hyperplanéd, this is a one
dimensional conic. Consider the m@p Sx {Qp}pes --» Sthe image ofp is of dimension three,
that is, ¢ is dominant. Now, for eaclp € X4, Qp is a conic; thereforeg is a conic bundle over
S If we can show thatp has a rational section, i.e. a rational map from an open subs®toof
Sx {Qp}pes, thenXy will be unirational.

Itis an open problem whether all conic bundles over a rational surface are unirational. However,
we can choose our surface sogadoes indeed admit a rational section.

The trick here is to choose our surfag@such that it has separable asymptotes, th&tisnsists
of two irreducible components over an algebraic extensida @hen the conic bundle will admit
a rational section. Indeed, if we take our surface to be a monoidal quartic surface, that is a surface

with a unigue singularity, then there exist simple checks for separable asymptotes. Observe that
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the three-fold given by Segre above contains the monoidal quartic surface defined by
X1 — 6XPX3G + X3 + X4 +X3xq = 0
with a unique triple pointa0:0:0: 1.

Marchisio (see [Marchisio]) showed, using these methods4-dimensional family of unira-
tional quartic hypersurfaces #f.

Let’s look finally at the first construction of non-rational unirational three-folds to appear in
1971; that of Iskovskikh and Manin in [I-M]. Following suggestions of Fano, they proved the
following theorem which immediately implies the non-rationality of the smooth quartic three-
folds.

Theorem 12. (Iskovskikh and Manin, 1971)
Let X4 be a smooth quartic three-fold . Then the groupBir (X4) of birational automorphisms
coincides with the grouput(X,) of biregular automorphisms.

The non-rationality follows from finiteness of the group of birational automorphBim,) of
X4. Indeed, the linear systeftps(1)|x,| generated by the hyperplane sectiongis invariant
under the action of the groujut(Xs), since the divisor-Kx belongs tdOp4(1)|x,|, by the adjunc-
tion formula. Therefore the group of automorphisms<gfconsists of projective automorphisms
and is thus finite (see [M-M]).

In fact they showed, using the Noether-Fano method (2.6), that there are no birational maps that
are not isomorphisms betwe#@ and a wide range of three-folds; for examghé, any cubic in
P* and any three-fold fibred into rational surfaces. In time more examples of three-folds surfaces
with this property emerged and they became knowhiionally rigid varieties(see [Cheltsov]).

To prove thatXy is non-rational then; if we suppose that there exists a birational map between
X4 andP3, then by the work of Iskovskikh and Manin in [I-M] it has to an isomorphism — this con-
tradiction ensures the non-rationality of the smooth quartic hypersurfa@s(angood summary
of [I-M] can be found in [Cheltsov]).

Of note is also Saltman’s approach which is outlined in [Shaf90]. He showedithaiil's ques-
tion has a negative solution in the following situation. Suppose@higta finite group of linear
transformations of a vector spa¥eover an algebraically closed fiekd Thenk(V) is the field of
rational functions of the coordinates \éfandk(V )€ is the field of invariants o6. He shows in
[Saltman] (later simplified see [Bogomolov]) that althougW )© is necessarily a subfield &fV),
it is not necessarily isomorphic to a rational function field. The ideas in the proof are simpler than
the ones given in the three papers of 1971. Moreover, the techniques used were available twenty
years before 1971.
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4. Appendix

We state here some well known results and sources for the diligent reader.

4.1. The Riemann-Roch theorem

Riemann-Roch for a divisdd on a smooth curve;
h%(D) — h°(Ke — D) = 1 g(C) +degD)

Riemann-Roch for a divisdd on a smooth surfacg

D-D+Ks-D
X(D) = X(08) + ———5——

that is
D-D+Ks-D

(D) — (D) +FE(D) = X(0s) + ———

Details can be found in [G-H], [Harts] and [Shafl]/[Shaf2].

4.2. The adjunction formula
Relating the canonical divisors of smooth variettes X;
Ky = (Kx +Y)ly
or also, following our discussion on the virtual genus in Section 2;

Ks-C+C-C
n(C):Serl

whereC is an irreducible curve on a surfaBe

For details; [G-H], [Harts] or [Shafl] and [Shaf2].

4.3. The Riemann-Hurwitz formula

Whenf : X --» Y is a rational map wittf (X) dense inY the Riemann-Hurwitz formula relates
the Euler characteristic of to that ofY, taking into account possible ramifications of the map.

X(X) =Nx(Y) - EX(V(X) -1

wherev(x) is the ramification index of atx € X, as a shorthand we shall write the formula as

X(X) =Nx(Y) —ramg
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For details see either [G-H] 2.1 or [Shaf2] VII.3.1.

4.4. Noether’s formula

For a surfac&s we have Noether’s formula for expressing the holomorphic Euler characteristic
of Sin terms of the Chern classes &f

ECACERIS)
XO=""1
See [G-H] 4.6 for details.
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